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A theoretical study is made of fully localized solitary waves, commonly referred to as
‘lumps’, on the interface of a two-layer fluid system in the case that the upper layer
is bounded by a rigid lid and lies on top of an infinitely deep fluid. The analysis is
based on an extension, that allows for weak transverse variations, of the equation
derived by Benjamin (J. Fluid Mech. vol. 245, 1992, p. 401) for the evolution in one
spatial dimension of weakly nonlinear long waves in this flow configuration, assuming
that interfacial tension is large and the two fluid densities are nearly equal. The
phase speed of the Benjamin equation features a minimum at a finite wavenumber
where plane solitary waves are known to bifurcate from infinitesimal sinusoidal
wavetrains. Using small-amplitude expansions, it is shown that this minimum is
also the bifurcation point of lumps akin to the free-surface gravity–capillary lumps
recently found on water of finite depth. Numerical continuation of the two symmetric
lump-solution branches that bifurcate there reveals that the elevation-wave branch
is directly connected to the familiar lump solutions of the Kadomtsev–Petviashvili
equation, while the depression-wave branch apparently features a sequence of limit
points associated with multi-modal lumps. Plane solitary waves of elevation, although
stable in one dimension, are unstable to transverse perturbations, and there is evidence
from unsteady numerical simulations that this instability results in the formation of
elevation lumps.

1. Introduction
In contrast to plane solitary waves, which are ubiquitous, fully localized solitary

waves arise under rather special flow conditions. This apparently accounts for the fact
that such so-called lumps have received far less attention than plane solitary waves.

The majority of prior work deals with lumps in the weakly nonlinear long-wave
limit and is based on the Kadomtsev–Petviashvili (KP) equation, an extension of the
Korteweg–de Vries (KdV) equation that allows for weak spatial variations transverse
to the propagation direction (see, for example, Akylas 1994). While the KdV equation
predicts that plane solitary waves are always possible, the KP equation admits lump
solutions only if the linear-long-wave speed happens to be a minimum of the phase
speed, and this property is met under very restricted flow conditions. In the classical
water-wave problem, in particular, lumps of the KP type are possible only in the
high-surface-tension regime (Bond number greater than 1/3), which requires the fluid
depth to be less than a few mm (see, for example, Ablowitz & Segur 1979).
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In Part 1 (Kim & Akylas 2005), however, it was pointed out that gravity–capillary
lumps of a different kind can in fact be found on water of finite or infinite depth
for Bond number less than 1/3. Rather than the long-wave speed, these lumps
bifurcate from a linear sinusoidal wavetrain with finite wavenumber at the minimum
of the gravity–capillary phase speed, and are fully localized counterparts of the plane
solitary waves that are known to bifurcate there (Dias & Iooss 1993; Akylas 1993;
Longuet-Higgins 1993). Based on weakly nonlinear expansions close to the bifurcation
point, it was shown in Part 1 that small-amplitude lumps take the form of locally
confined modulated wavepackets with carrier oscillations that are stationary relative
to the envelope. In water of finite depth, in particular, the wave envelope and the
induced mean flow are governed by an elliptic–elliptic Davey–Stewartson equation
system, and lumps always feature algebraically decaying tails owing to this mean flow.
Although in Part 1 the discussion focused on gravity–capillary water waves, a similar
local analysis would apply in general close to an extremum of the phase speed at a
finite wavenumber, suggesting that lumps of the same type could be found in other
instances as well.

In closely related numerical work, Parau, Vanden-Broeck & Cooker (2005) recently
computed gravity–capillary lumps in deep water that, indeed, resemble fully localized
wavepackets in the small-amplitude limit close to the minimum phase speed. Also,
based on a weakly nonlinear model, Milewski (2005) was able to connect, via
numerical continuation, lumps of the KP equation in shallow water to lumps of
the wavepacket type near the minimum gravity–capillary phase speed in water of
finite depth. The asymptotic and numerical results, moreover, are supported by a
rigorous existence proof of fully localized gravity–capillary solitary waves, recently
devised by Groves & Sun (2005).

These findings have firmly estabilished that free-surface gravity–capillary lumps
are possible under quite general flow conditions. On the other hand, the stability of
the computed steady-solution branches, as well as the feasibility of obtaining lumps
from general locally confined initial conditions, remain unexplored. These issues are
of paramount importance in assessing the relevance of the new class of lumps from
a physical viewpoint.

In regard to the question of stability, it is worth noting that, in the small-amplitude
limit where lumps behave like wavepackets, the elliptic–elliptic Davey–Stewartson
equations predict focusing of the wavepacket envelope at a finite time, for initial
conditions above a certain threshold (Ablowitz & Segur 1979; Papanicolaou et al.
1994). Given that lumps may be viewed as modulated wavepackets only in the vicinity
of the bifurcation point, however, it is not clear to what extent they are affected by
this nonlinear-focusing instability.

In the present paper, we make a first step towards settling some of these open
questions. For simplicity, rather than the full water-wave equations, we shall work
with a model equation for interfacial gravity–capillary waves; namely, we consider an
extension to two spatial dimensions of the evolution equation derived by Benjamin
(1992) for weakly nonlinear long waves on the interface of a two-fluid system, in the
case that the upper layer is bounded by a rigid lid and lies on top of an infinitely
deep fluid.

In this flow configuration, when interfacial tension is assumed to be large and the
two fluid densities are nearly equal, the KdV and the Benjamin–Davis–Ono (BDO)
dispersive terms for long interfacial waves become equally important. As a result, the
phase speed of the Benjamin equation features a minimum at a finite wavenumber,
which is the bifurcation point of plane solitary waves akin to the free-surface solitary
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waves bifurcating at the minimum gravity–capillary phase speed (Akylas, Dias &
Grimshaw 1998; Albert, Bona & Restrepo 1999; Calvo & Akylas 2003).

Accounting for transverse spatial variations, the resulting long-wave equation
combines the KdV and BDO dispersive terms with the transverse spatial term of
the KP equation. This two-dimensional Benjamin (2-DB) equation admits lumps,
which again bifurcate at the minimum phase speed, and in the small-amplitude limit
are analogous to the free-surface lumps on water of finite depth found in Part 1.
Numerical continuation in the finite-amplitude regime reveals that lumps of elevation
are directly connected to lumps of the KP type in the KdV limit, while lumps of
depression apparently undergo successive limit-point bifurcations associated with the
appearance of multi-modal lumps.

According to the 2-DB equation, plane solitary waves are unstable to transverse
perturbations. Numerical simulations indicate that this instability results in the
formation of elevation lumps, which appear to propagate stably, thus assuming
the role of asymptotic states of the initial-value problem in two spatial dimensions.

Unfortunately, it becomes prohibitively expensive to extend our simulations very
close to the bifurcation point, as lumps decay slowly at infinity in this limit, and
we have not been able to study in any systematic way the effect of the nonlinear
focusing predicted by the Davey–Stewartson equations on the propagation of lumps.
Nevertheless, we have seen no evidence of this type of instability in the computations
discussed here.

As discussed in Calvo & Akylas (2003), while the Benjamin equation is formally
valid in a very specific flow regime, it remains reliable qualitatively for a wide range
of flow conditions, making the generation of this type of interfacial solitary wave
feasible experimentally. It is likely that this is the case as well for the 2-DB equation
and its lump solutions.

2. Preliminaries
Consider a fluid layer of depth h and density ρ2 that is bounded above by a rigid

lid and lies on top of an infinitely deep fluid of density ρ1 >ρ2.
The Benjamin equation governs the propagation of straight-crested uni-directional

weakly nonlinear long waves on the interface of this two-fluid system, ignoring the
effects of viscosity and assuming that interfacial tension is large and the fluid densities
are nearly equal (Benjamin 1992). Under these flow conditions, the 2-DB equation
is an extension of the Benjamin equation that allows for weak spatial variations
transverse to the propagation direction, and can be derived by a standard weakly
nonlinear long-wave expansion (see Kim 2006). Here, however, in the interest of
brevity, we sketch a heuristic derivation based on the linear dispersion relation.

In dimensionless variables, using h as lengthscale and (gh)1/2 as velocity scale, the
linear dispersion relation of interfacial waves with wavenumber κ and frequency ω

has the following expansion in the long-wave limit (κ → 0):

ω = ±c0κ

(
1 − |κ |

R
+

W

2
κ2 + · · ·

)
, (2.1)

where

R =
ρ1

ρ2

, W =
T

δρgh2
, c0 =

1 − R

R
, (2.2)

T being the interfacial tension, g the gravitational acceleration and δρ = ρ1 − ρ2 the
density difference of the two fluids.
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According to (2.1), to leading order, long waves are non-dispersive and propagate
with speed ±c0; the first effects of dispersion normally derive from the term
proportional to κ |κ | in (2.1) which translates into a dispersive term of the BDO type
in the corresponding long-wave evolution equation. In the flow regime considered
by Benjamin (1992), W � 1, however, the next-order correction, proportional to κ3,
becomes equally important, in which case a KdV dispersive term comes into play as
well; in this instance, the propagation of weakly nonlinear long interfacial waves in
one spatial dimension is then governed by the Benjamin equation.

To allow for weak transverse variations, returning to (2.1), we use the fact that
uni-directional nearly plane waves with wavenumber

κ = (k2 + m2)1/2 = k +
1

2

m2

k
+ · · · , (2.3)

k being the wavenumber component along the propagation (x-, say) direction and
m � k the wavenumber component in the transverse (z-, say) direction, obey the
dispersion relation

ω = c0k − c0

2R
k|k| +

c0

2
Wk3 +

c0

2

m2

k
, (2.4)

including the leading-order dispersive and transverse-variation effects. Based on (2.4),
as each term corresponds to a specific linear operator in the real domain,

ω ↔ i
∂

∂t
, k ↔ −i

∂

∂x
, m ↔ −i

∂

∂z
, |k| ↔ − ∂

∂x
H, (2.5)

one can read off the linear terms of the 2-DB equation; upon adding the familiar
KdV-type quadratic nonlinear term, the full evolution equation for the interfacial
elevation y = η(x, z, t) in a reference frame moving with the long-wave speed c0,

x → x − c0t, (2.6)

then turns out to be(
ηt +

3

2
c0ηηx +

c0

2R
H{ηxx} − c0

2
Wηxxx

)
x

+
c0

2
ηzz = 0, (2.7)

where H stands for the Hilbert transform with respect to x:

H{f } =
1

π
−
∫ ∞

−∞

f (ξ )

ξ − x
dξ. (2.8)

As expected, the 2-DB equation (2.7) combines the KdV and BDO dispersive terms
with the transverse-variation term of the KP equation. In the absense of the BDO
term, since the KdV dispersive term and the transverse-variation term have opposite
signs, (2.7) reduces to the so-called KP-I equation that governs shallow-water waves in
the high-surface-tension regime (Bond number greater than 1/3). In the other extreme,
when the KdV dispersive term is ignored, (2.7) reduces to the two-dimensional BDO
equation derived by Ablowitz & Segur (1980) for internal waves in stratified fluids of
large depth.

Locally confined solutions of the 2-DB equation (2.7) are subject to the constraint∫ ∞

−∞
η(x, z, t) dx = 0, (2.9)

that also applies to the KP and the two-dimensional BDO equations. As explained
in Katsis & Akylas (1987), this constraint derives from considering nearly plane
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wave disturbances with weak transverse variations: it is clear from (2.3) that Fourier
components with k = 0 and m �= 0 violate this assumption, and the constraint (2.9)
simply ensures that no such wave components are present in the disturbance. For
detailed discussions of this constraint in connection with the initial-value problem of
the KP equation, see Grimshaw & Melville (1989) and Ablowitz & Wang (1997).

It is also worth noting that, in contrast to the full interfacial-wave equations, the
2-DB equation is not isotropic, as it describes nearly uni-directional waves, x thus
being a preferred direction. This might seem to suggest that possible lump solutions
of this model equation depend on the direction of propagation, casting doubt on their
physical relevance. As discussed below, however, oblique lump solutions can in fact
be mapped to lumps propagating along the x-direction via a coordinate and speed
transformation. Moreover, within the approximations inherent in the derivation of
the 2-DB equation, this transformation can be interpreted as merely a rotation of
axes.

Specifically, according to (2.7), the profile of an oblique lump η(ξ, ζ ) propagating
with speed V , say, at an angle φ to the x-direction,

ξ = x − V t cos φ, ζ = z − V t sin φ, (2.10)

must satisfy

(
−V cosφ ηξ −V sin φ ηζ +

3

2
c0ηηξ +

c0

2R
H{ηξξ } − c0

2
Wηξξξ

)
ξ

+
c0

2
ηζζ = 0. (2.11)

By introducing the coordinate transformation

ξ̃ = ξ +
V

c0

sin φ ζ, ζ̃ = ζ, (2.12)

however, (2.11) can be reduced to the equation satisfied by a non-oblique lump:

(
− Ṽ η +

3

4
c0η

2 +
c0

2R
H{ηξ̃ } − c0

2
Wηξ̃ξ̃

)
ξ̃ ξ̃

+
c0

2
ηζ̃ ζ̃ = 0, (2.13)

with speed

Ṽ = V cos φ +
V 2

2c0

sin2 φ. (2.14)

Hence, any oblique lump solution can be related to a non-oblique lump solution
having a different speed given by (2.14).

To interpret the speed transformation (2.14), note that a lump solution of the 2-DB
equation (2.7) propagating along the x-axis with speed Ṽ , say, in fact would move
with speed c0 + Ṽ in still fluids, in view of the change of reference frame (2.6) which
is equivalent to superposing a steady stream –c0 in the x-direction; furthermore,
Ṽ /c0 � 1, since dispersive and nonlinear effects are taken to be weak in deriving
the 2-DB equation. Suppose now that the same lump is slightly rotated so that, in
still fluids, it propagates at an angle α � 1 to the x-axis again with speed c0 + Ṽ .
When viewed from the moving reference frame (2.6), however, the x- and z- velocity
components of this lump would be

Vx ≈ Ṽ − c0

2
α2, Vz ≈ αc0. (2.15)
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Hence, relative to the moving reference frame, the lump appears to propagate at an
angle φ to the x-axis with a speed V , where

V cos φ = Ṽ − c0

2
α2, V sin φ = αc0. (2.16)

Note that, according to (2.16), Ṽ is related to V precisely as in (2.14) and, moreover,
in the coordinate transformation (2.12), V sin φ/c0 is equal to the rotation angle α.
This confirms that oblique-lump solutions of the 2-DB equation correspond to slightly
rotated non-oblique lumps, and in the following attention is focused solely on lumps
propagating along x.

In preparation for the ensuing analysis, we re-scale variables according to

(x, z) =
1

W 1/2
(x ′, z′), t ′ = − c0

2W 1/2
t, η′ =

3

2
η, (2.17)

so, after dropping the primes, the 2-DB equation (2.7) takes the normalized form

(ηt + (η2)x − 2γ H{ηxx} + ηxxx)x − ηzz = 0, (2.18)

where

γ =
1

2RW 1/2
. (2.19)

Ignoring transverse variations in (2.18) recovers the Benjamin equation in the form
considered in Akylas et al. (1998).

3. Steady lumps
For the purpose of computing steady lumps, we shall adhere to the convention

adopted in Part 1 and normalize the wave speed to 1. In the reference frame moving
with a lump, ξ = x − t , the profile η(ξ, z) then satisfies a steady version of the 2-DB
equation (2.18):

(− η + η2 − 2γ H{ηξ } + ηξξ )ξξ − ηzz = 0, (3.1)

and lump-solution branches are traced by varying the parameter γ .

3.1. Bifurcation of lumps

As already remarked, in general, lumps bifurcate from infinitesimal-amplitude
sinusoidal wavetrains at specific wavenumber k0 where the phase speed attains an
extremum and is thus equal to the group speed. In the normalization used here, it is
easy to check that the phase speed of the 2-DB equation (2.18) has a maximum equal
to 1 at k0 = 1, for γ = γ0 = 1. (In view of the time reversal in (2.17), this maximum
corresponds to a minimum of the phase speed of the unscaled equation (2.7).)

Close to this bifurcation point, small-amplitude lumps may be viewed as locally
confined wavepackets with carrier oscillations that are stationary relative to the
wavepacket envelope, and can be described by a multiple-scale expansion. Here we
shall only outline the salient features of this weakly nonlinear analysis, as it closely
parallels the one presented in Part 1 for free-surface lumps.

In the vicinity of γ0 = 1, we write

γ = 1 − 1
2
ε2 (ε � 1), (3.2)

and expand η(ξ, z) as follows:

η = 1
2
ε{A(X, Z)eiξ + c.c.} + ε2{A2(X, Z)e2iξ + c.c.} + ε2A0(X, Z) + · · · , (3.3)
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where (X, Z) = ε(ξ, z) are the ‘stretched’ envelope variables and c.c. denotes the
complex conjugate.

Substituting expansion (3.3) in equation (3.1) and collecting second-harmonic, mean
and primary-harmonic terms up to O(ε3), it is found that the envelope A and the
mean term A0 satisfy the following coupled system:

A0XX + A0ZZ = 1
2
(|A|2)XX, (3.4)

AXX + AZZ − A + 1
2
A2A∗ + 2A0A = 0. (3.5)

This system is entirely analogous to the steady elliptic–elliptic Davey–Stewartson
equations derived in Part 1 for the primary-harmonic envelope and the induced mean
flow of small-amplitude gravity–capillary lumps on water of finite depth.

To ensure that lump solutions of the 2-DB equation (3.1) are possible, it is necessary
to find locally confined solutions of the equation system (3.4) and (3.5). As no such
solutions are known in closed form, this system is solved numerically by a continuation
procedure suggested in Papanicolaou et al. (1994). For this purpose, the factor 1

2
on

the right-hand side of (3.4) is temporarily replaced with ν, say,

A0XX + A0ZZ = ν(|A|2)XX, (3.6)

which serves as the continuation parameter in tracking solutions of the equation
system (3.5) and (3.6).

From (3.6), A0 → 0 as ν → 0 so, in this limit, the coupling of A to A0 vanishes,
and (3.5) reduces to a steady two-dimensional nonlinear Schrödinger equation:

AXX + AZZ − A + 1
2
A2A∗ = 0. (3.7)

As discussed in Part 1, (3.7) admits radially symmetric locally confined solutions,
A(r), where r2 =X2 + Z2, that satisfy the boundary-value problem

d2A

dr2
+

1

r

dA

dr
− A +

1

2
A3 = 0 (0 < r < ∞), (3.8)

dA

dr
= 0 (r = 0), (3.9a)

A → 0 (r → ∞). (3.9b)

Working now with the equation system (3.5) and (3.6), by exploiting the fact that
A and A0 uncouple in the limit ν → 0, a locally confined solution of the Davey–
Stewartson equations (3.4) and (3.5), corresponding to a lump, was obtained as
follows: starting at ν = 0 with A0 = 0 and the known ground-state solution of the
problem (3.8)–(3.9) that decays monotonically to zero, we computed locally confined
solutions of (3.5) and (3.6) for ν > 0 by increasing ν incrementally until the desired
value of ν = 1

2
was reached. As in Part 1, the equations (3.5) and (3.6) were discretized

by a pseudospectral method combined with mapping the (X, Z)-plane into a bounded
square domain. For each value of ν, the corresponding nonlinear algebraic equations
were solved by Newton’s method in only one quarter of the domain, taking advantage
of symmetry, and using the known solution at the previous value of ν as first guess
(see Kim 2006 for details).

Figure 1 shows X- and Z-cross-sections of the computed profiles A(X, Z) and
A0(X, Z). The maximum of A, which corresponds to the lump peak amplitude, occurs
at the origin X = Z = 0. Also, it is seen that the mean term A0 decays at infinity
more slowly than the primary-harmonic envelope A and, as it turns out, controls the
behaviour at the tails of lumps.
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Figure 1. Locally confined solution of the Davey–Stewartson equations (3.4) and (3.5).
(a) Primary-harmonic envelope A; (b) mean term A0. X-cross-section (–); Z-cross-section (- -).

Specifically, from (3.5), A decays exponentially, A ∝ exp(−r) as r → ∞. On the
other hand, upon taking the Fourier transform with respect to X and Z, it follows
from (3.4) that

A0 ∼ − I0

4π

∂

∂Z

(
Z

X2 + Z2

)
(r → ∞), (3.10)

where

I0 =

∫ ∞

−∞

∫ ∞

−∞
|A|2 dX dZ. (3.11)

According to (3.10), the mean term A0 decays algebraically at infinity and, taking
into account (3.3), so do the lump tails:

η ∼ −ε2 I0

4π

∂

∂Z

(
Z

X2 + Z2

)
. (3.12)

Finally, inserting the computed locally confined solution of the Davey–Stewartson
equations (3.4) and (3.5) in the expansion (3.3), it follows that, for values of γ slightly
below the bifurcation point γ0 = 1, the peak amplitude η0 of a lump is given by

η0 = ±
√

2(1 − γ )1/2A(0, 0) + · · · , (3.13)

where A(0, 0) = 2.15, +(−) corresponding to elevation (depression) lumps.

3.2. Finite-amplitude lumps

We now turn our attention to finite-amplitude lump solutions of the steady 2-DB
equation (3.1). Recall that elevation and depression solitary waves of the Benjamin
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equation also bifurcate at γ = 1, and the corresponding solution branches are
described close to the bifurcation point by an expression similar to (3.13), the only
difference being that A(0, 0) = 2.15 is replaced by 2

√
2/3 = 1.63 (Akylas et al. 1998).

As discussed below, lump solutions in fact follow a bifurcation scenario very similar
to that of plane solitary waves, in the finite-amplitude regime as well.

For the purpose of tracking lump-solution branches in the finite-amplitude regime,
we used numerical continuation in the parameter γ , employing the weakly nonlinear
results of § 3.1 as a first approximation at the starting point, close to γ = 1. Following a
numerical procedure similar to that used earlier for the Davey–Stewartson equations,
the steady 2-DB equation (3.1) was discretized by a pseudospectral approximation
combined with mapping of the (ξ, z)-plane into a finite square domain. Locally
confined solutions of the 2-DB equation obey the constraint (2.9) so this also had
to be imposed on the numerical solution, furnishing an additional equation. The
resulting system of nonlinear algebraic equations was solved by Newton’s method.
Details of implementation of the numerical procedure, including the resolution used
in each of the runs and convergence checks, are given in the Appendix.

We begin by comparing the numerically computed profiles of lumps to the weakly
nonlinear results of § 3.1. Figure 2 shows ξ - and z-cross-sections of elevation and
depression lumps for two values of γ = 0.975 and γ =0.995 which, according to (3.2),
correspond to ε2 = 0.05 and ε2 = 0.01, respectively. The weakly nonlinear profiles were
obtained correct to O(ε2), by inserting in expansion (3.3) the locally confined solution
of the Davey–Stewartson equations for A(X, Z) and A0(X, Z) computed in § 3.1. As
expected, the agreement between the numerical and asymptotic results improves as
ε2 is decreased. At the same time, however, it becomes apparent that the weakly
nonlinear theory is quantitatively accurate only very close to the bifurcation point.

We next examine the behaviour of the elevation solution branch in the finite-
amplitude regime. Figure 3 summarizes the results in a bifurcation diagram, displaying
the lump peak amplitude, η0 ≡ η(ξ = 0, z = 0), as a function of γ . As γ is decreased
from 1, η0 increases more rapidly than the weakly nonlinear expression (3.13) would
suggest, and the lump profile becomes more localized with fewer oscillations along
ξ (figure 4a, b). Finally, at γ = 0, the familiar lump solution of the KP-I equation is
recovered (figure 4c).

Even though γ > 0 in the flow configuration of interest here, the elevation solution
branch can be readily continued for negative values of γ (figure 4d); the peak
amplitude η0 continues to increases monotonically and eventually approaches a finite
limiting value η0 ≈ 15 as γ → −∞. In this limit, the BDO dispersive term overwhelms
the KdV dispersive term, and the 2-DB equation (2.18) reduces to the two-dimensional
BDO equation derived by Ablowitz & Segur (1980) for internal waves in deep fluids,
but with the BDO and transverse-variation terms having opposite signs, in which case
plane BDO solitary waves are unstable to transverse perturbations. This suggests that
the two-dimensional BDO equation, like the KP-I equation, admits lump solutions
when plane solitary waves happen to be transversely unstable.

Based on the bifurcation diagram in figure 3, elevation lumps behave in a manner
entirely analogous to plane elevation solitary waves of the Benjamin equation. As
indicated in figure 3, the latter are directly connected to the KdV solitary wave at
γ = 0 (Albert et al. 1999; Calvo & Akylas 2003) and, furthermore, they approach the
BDO solitary wave as γ → −∞. Quantatively, however, lumps feature significantly
higher peak amplitudes than plane solitary waves.

Turning now to the other lump-solution branch that bifurcates at γ = 1, the
bifurcation diagram corresponding to depression lumps is shown in figure 5. Again,
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Figure 2. Comparison of numerically computed lumps (–) near the bifurcation point to the
wavepackets constructed from the weakly nonlinear theory (-·-). Left column: ξ -cross-section,
right column: z-cross-section. (a, b) Elevation branch: (a) 2(1 − γ ) = ε2 = 0.05; (b) ε2 = 0.01.
(c, d) Depression branch: (c) ε2 = 0.05; (d) ε2 = 0.01.
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Figure 3. Bifurcation diagram of lumps (–) and plane solitary waves (- -) of elevation. The
lump profiles corresponding to (a), (b) and (c) are displayed in figure 4.

the value of the profile at the origin, η0 ≡ η(ξ =0, z =0), which for depression lumps
is negative, is plotted as a function of the parameter γ . Here, η0 does not coincide,
in general, with the peak lump amplitude because finite-amplitude depression lumps
feature a shallow middle trough and relatively tall side crests (figure 6a, b). For
γ � 0.89, in fact, a limit point is reached at which the solution branch turns towards
increasing values of γ and the middle trough of the lump profile develops a dimple
(figure 6c, d); increasing γ further, the lump profile decreases in amplitude and looks
more like two lumps of elevation pieced together in the middle. This behaviour is very
similar to that of depression solitary waves of the Benjamin equation (Calvo & Akylas
2003), and the corresponding solution branch is also plotted in figure 5 for comparison.

Although it becomes prohibitively expensive to carry the numerical continuation
past the stage shown in figure 5, we expect the branch of depression lumps to turn
back towards decreasing values of γ at another turning point very close to 1, and
to keep wrapping around, each time getting close to, but never reaching, 1. Such a
bifurcation scenario takes place for free-surface gravity–capillary solitary waves of
elevation on deep water slightly below the minimum phase speed and the plethora
of solitary waves that arises can be interpreted as multi-modal solitary waves (Dias,
Menasce & Vanden-Broeck 1996, § 3). The numerical evidence presented in figure 5,
although far from complete, hints that the 2-DB equation also admits multi-modal
lumps, but here it is the depression branch that behaves like the elevation branch of
free-surface solitary waves.

4. Transverse instability
As remarked earlier, in the KdV limit (γ = 0), the 2-DB equation (2.18) reduces to

the so-called KP-I equation, which predicts that plane KdV solitary waves are unstable
to transverse perturbations; moreover, the KP-I equation admits lump solutions that
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Figure 4. Representative lump profiles for the elevation branch. (a) γ =0.975; (b) γ = 0.925;
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Figure 5. Bifurcation diagram of lumps (–) and plane solitary waves (- -) of depression. The
lump profiles corresponding to (a), (b), (c) and (d) are displayed in figure 6.

become the asymptotic states of the initial-value problem in the presence of transverse
variations (Ablowitz & Segur 1979).

The stability of solitary waves of the Benjamin equation to one-dimensional pertur-
bations was explored in Calvo & Akylas (2003). Out of the two solution branches that
bifurcate at γ = 1, the elevation branch turns out to be stable (as was also found by
Benjamin 1992) while the depression branch is unstable until the limit point at γ ≈
0.795 is reached (see figure 5), where an exchange of stabilities is to be expected. While
a comprehensive study of the initial-value problem is lacking at present – the Benjamin
equation is not integrable – sample numerical solutions suggest that elevation solitary
waves can emerge from locally confined initial conditions (Calvo & Akylas 2003).

For the 2-DB equation, the fact that lumps and plane solitary waves of elevation
co-exist (see figure 3) would suggest that the latter are unstable to transverse
perturbations, as in the analogous case of the KP-I equation noted above. We
now proceed to verify this claim based on a perturbation analysis for long transverse
disturbances, similar to the one used in Ablowitz & Segur (1980).

Returning to the 2-DB equation (2.18), on the assumption that transverse variations
are long, η depends on the stretched coordinate Ẑ =µz, where µ � 1:

(ηt + (η2)x − 2γ H{ηxx} + ηxxx)x − µ2ηẐẐ = 0. (4.1)

The leading-order disturbance,

η = η(0)(ξ − ψ(Ẑ, T̂ ); γ ), (4.2)

is assumed to be a plane solitary wave of the Benjamin equation propagating along
x with unit speed (ξ = x − t) so η(0) satisfies

−η(0) + η(0)2 − 2γ H{η(0)
ξ } + η

(0)
ξξ = 0; (4.3)

the presence of transverse variations in η(0) is reflected in the modulated phase ψ
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that depends on Ẑ and the slow time T̂ = µt . The goal of the perturbation stability
analysis is to ascertain whether such modulations grow in time.

To this end, upon expanding η in powers of µ,

η = η(0) + µη(1) + µ2η(2) + · · · , (4.4)

and substituting in (4.1), it is found that the O(1) equation is already satisfied in view
of (4.3). To O(µ), then, η(1) satisfies the forced problem

−η
(1)
ξ + 2

(
η(0)η(1)

)
ξ

− 2γ H
{
η

(1)
ξξ

}
+ η

(1)
ξξξ = −ψT̂ η

(0)
ξ (4.5)

or, in short,

Lη(1) = R(1), (4.6)

where L denotes the linear operator on the left-hand side and R(1) the forcing term
on the right-hand side of (4.5).

Invoking now the standard solvability argument, for the forced problem (4.6) to
have a locally confined solution, R(1) must be orthogonal to η(0),∫ ∞

−∞
R(1)η(0) dξ = 0, (4.7)

since η(0) is a proper homogeneous solution of the adjoint problem:

L+η(0) = η
(0)
ξ − 2η(0)η

(0)
ξ + 2γ H

{
η

(0)
ξξ

}
− η

(0)
ξξξ = 0, (4.8)

in view of (4.3). This solvability condition is trivially met at this order because R(1)

and η(0) have opposite parities, and we may readily solve for η(1):

η(1) = ψT̂

(
η(0) +

1

2
ξη

(0)
ξ − 1

2
γ

∂η(0)

∂γ

)
. (4.9)

Proceeding next to O(µ2), it is found that η(2) satisfies a forced problem of the form
(4.6) with R(1) replaced by

R(2) = −
(
η(1)2

)
ξ

− η
(1)

T̂
+

∫ ξ

η
(0)

ẐẐ
dξ. (4.10)

Again, for this problem to have a locally confined solution, R(2) must be orthogonal
to η(0) and, since R(2) now is not odd in ξ , this solvability condition translates into
an evolution equation for ψ(Ẑ, T̂ ):

1

4

{
3

∫ ∞

−∞
η(0)2 dξ − γ

∂

∂γ

∫ ∞

−∞
η(0)2 dξ

}
ψT̂ T̂ +

∫ ∞

−∞
η(0)2 dξ ψẐẐ = 0. (4.11)

Based on (4.11), therefore, the plane solitary wave is unstable to long transverse
modulations if the coefficient of ψT̂ T̂ above happens to be positive:

3

∫ ∞

−∞
η(0)2 dξ − γ

∂

∂γ

∫ ∞

−∞
η(0)2 dξ > 0. (4.12)

It can be verified that if, rather than γ , one chooses the wave speed c, to trace
solitary-wave solution branches of the Benjamin equation, so η(0) = η(0)(θ; c) with
θ = x − ct , (4.12) is equivalent to

∂

∂c

∫ ∞

−∞
η(0)2 dθ > 0, (4.13)

consistent with the transverse-instability condition obtained by Bridges (2001) for
solitary-wave solutions of Hamiltonian systems.
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In the KdV limit (γ = 0), (4.12) clearly implies instability, recovering the familiar
result for the KP-I equation. In the small-amplitude limit near their bifurcation
point (γ → 1), on the other hand, solitary waves of the Benjamin equation can be
approximated as (Akylas et al. 1998)

η = ± 2ε√
3
sech(εξ ) cos ξ + · · · , (4.14)

where ε2 = 2(1 − γ ); to leading order in ε, making use of (4.14), therefore,

−γ
∂

∂γ

∫ ∞

−∞
η(0)2 dξ =

2

ε

∫ ∞

−∞
η(0) ∂η(0)

∂ε
dξ =

8

3

∫ ∞

−∞
sech2 εξ cos2 ξ dξ > 0, (4.15)

so the instability condition (4.12) is met, thus confirming that plane solitary waves
are unstable to transverse modulations in this limit as well.

For elevation solitary waves, furthermore, we have checked by numerical means
that (4.12) is satisfied, and hence the instability persists, for γ in the whole range of
interest, 0 � γ < 1. The evolution of unstable perturbations in the finite-amplitude
regime is discussed below.

5. Numerical simulations
Here we report on unsteady numerical simulations of the 2-DB equation (2.18), in

an effort to understand the role that lumps play in the evolution of disturbances in
two spatial dimensions.

The numerical method of solution is analogous to the one used in Feng, Kawahara
& Mitsui (1999) for the KP-I equation. It employs fast Fourier transform (FFT) in x

and z combined with leap-frog time stepping:

η̂n+1 − η̂n−1

2�t
+ ilF{(F−1{η̂n})2} +

i

3
ω(η̂n+1 + η̂n + η̂n−1) = 0, (5.1)

where η̂n ≡ F{ηn} denotes the Fourier transform in x and z at the nth time step
and ω = 2γ k|k| − k3 − m2/k is the linear dispersion relation of (2.18). In this semi-
implicit scheme, two FFTs are needed per time step and, as shown in Kim (2006),
�t is restricted by a stability condition of the form �t � O(�x). Moreover, the
computational domain must be large enough to avoid reflections from the boundaries.

We now return to the transverse instability of plane solitary waves found in § 4 and
follow the unstable disturbances in the finite-amplitude regime. For this purpose, we
choose as initial condition

η(x, z, t = 0) = aη̄(ax; γ ), (5.2)

where η̄(x; γ ) is the profile of a plane solitary wave with unit speed, and

a(z) = 1 + 0.1 cos
πz

40
(5.3)

is an amplitude function that imposes a periodic perturbation in the transverse
direction.

Note that the initial condition (5.2) is such that the ‘mass’ per unit z,

M =

∫ ∞

−∞
η dx, (5.4)

is uniform along z, as required by the 2-DB equation (2.18) for disturbances that are
locally confined in x and periodic in z. According to (2.18), M is in fact independent



On gravity–capillary lumps. Part 2 253

(a)

(b)

(c)

η

η

η

0 40 80 120 –15 0
15–1.0

0

2.5

–1.0
0

2.5

–1.0
0

2.5

0 40 80 120

–15

0

15

x

x

z

z

0 40 80 120 –15 0
15

x z

0 40 80 120 –15 0
15

x
z

0 40 80 120

–15

0

15

x

z

0 40 80 120

–15

0

15

x

z

Figure 7. Evolution of plane solitary wave of elevation with unit speed (for γ = 0.85) in the
presence of transverse perturbation. (a) t = 0, (b) t = 50, (c) t = 100. An elevation lump with
speed c ≈ 1.21 emerges and propagates ahead of the rest of the disturbance.

of t as well, and this constraint is satisfied exactly by the spectral numerical scheme
used here.

Figure 7 shows the initial condition (5.2) corresponding to a plane solitary wave
of elevation for γ =0.85 and two snapshots of the disturbance at later times. These
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Figure 8. Comparison of the upstream-propagating disturbance (–) at t = 120, that emerges
from the transverse instability of a plane solitary wave γ = 0.85, to the computed steady
elevation lump (- -) propagating with same speed c ≈ 1.21. (a) x-cross-section, (b) z-cross-
section.

computations were carried out using 1600 Fourier modes in the x-direction and
400 modes in the z-direction with �x = �z =0.1 and �t = 0.05. As a result of
the transverse instability of the plane solitary wave, a fully localized disturbance
resembling a lump of elevation emerges and propagates ahead of the rest of the
disturbance with speed c ≈ 1.21. The profile of the elevation lump having this speed
can be readily obtained, via re-scaling

x → x√
c
, z → z

c
, η → cη, γ → γ√

c
, (5.5)

from the steady lump solutions with unit speed computed in § 3.2, and is compared in
figure 8 to the upstream-propagating disturbance found in the unsteady computation
at t =120. There is very good agreement between these two profiles, confirming that
the localized disturbance arising from the transverse instability of the plane solitary
wave is indeed an elevation lump. We also carried out computations with the same
initial condition (5.2)–(5.3) but for a solitary wave of larger amplitude (γ = 0.75), in
which case two elevation lumps were shed upstream.

These simulations suggest that the transverse instability of elevation solitary waves
results in the formation of elevation lumps which appear to be stable. A comprehensive
numerical study of the initial-value problem of the 2-DB equation for locally confined
initial conditions, including the interaction of two lumps, is currently under way.

We wish to thank Professors Mark Ablowitz and Victor Shrira for helpful discus-
sions. We are also grateful to the anonymous referees whose comments helped improve
the paper significantly. This work was supported by the Air Force Office of Scientific
Research, Air Force Materials Command, USAF, under Grant Number FA9950-04-
1-0125 and by the National Science Foundation Grant Number DMS-0305940.

Appendix. Computation of finite-amplitude lumps
Here we discuss details of the numerical procedure used for the computation of

finite-amplitude steady lumps in § 3.2.
Typically, the profiles of finite-amplitude lumps are such that, while most of

the interesting behaviour is localized near the centre, they require a rather large
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N × M γ = 0.5 γ = 0.75 γ = 0.975

128 × 128 2.3761 1.4465 0.4224

128 × 96 2.3761 1.4465 0.4224

128 × 64 2.3761 1.4465 0.4223

96 × 64 2.3765 1.4468 0.4230

Table 1. Convergence of peak amplitude η0 of elevation lumps as the number of grid points
is increased for three values of the parameter γ .

computational domain owing to the algebraic decay at infinity. For this reason, it
was decided to use a domain transformation (ξ, z) → (p, q) that maps the (ξ, z)-plane
(−∞ < ξ < ∞, −∞ <z < ∞) into a square (−1 � p < 1, −1 � q � 1):

ξ =
Lp

(1 − p2)1/2
, z =

Lq

(1 − q2)1/2
, (A 1)

L being a scaling factor that was set to L = 15. In addition, an uneven collocation
mesh, that is clustered near the centre of the wave profile and is relatively coarse in
the far field, was used:

−1 = p2N < p2N−1 < . . . < p1 < p0 = 1, −1 = q2M < q2M−1 < . . . < q1 < q0 = 1,

(A 2)

where pn = cos θ1,n and qm = cos θ2,m with θ1,n = nπ/2N and θ2,m = mπ/2M (0 � n �
2N, 0 � m � 2M).

As basis functions, we choose

fn(p) =
1

an

2N∏
k = 0
k �= n

(p − pk), an =

2N∏
k = 0
k �= n

(pn − pk), (A 3)

which satisfy fn(pk) = δnk .
The derivative ∂/∂p then can be represented as a (2N + 1) × (2N + 1) matrix:

Dij =
1

aj

2N∏
k = 0

k �= i, j

(pi − pk) =
ai

aj (pi − pj )
(i �= j ), Djj =

2N∑
k = 0
k �= j

(pj − pk)
−1, (A 4)

and likewise ∂/∂q corresponds to a similar (2M +1)× (2M +1) differentiation matrix.
Owing to the symmetry properties of lumps η(ξ, z) = η(±ξ, ±z), however, it is possible
to reduce the size of these matrices to (N × N ) and (M × M), respectively, which in
turn cuts to 1/16 the storage memory required for calculating the Jacobian matrix in
Newton’s iterations.

Finally, the Hilbert transform H{η} is computed from (2.8) by quadrature and
also results in an N × N matrix. As discussed in Kim (2006), the treatment of the
principal-value integral in (2.8) requires care because of the non-uniform grid used
here.

The accuracy of the numerical procedure was tested by monitoring the convergence
of the computed lump profiles as the resolution was increased. As a typical example,
table 1 illustrates the convergence of the peak amplitude η0 of elevation lumps for
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three values of γ . As expected, higher resolution is required for computing lumps
close to the bifurcation point γ = 1, where the wave profiles resemble wavepackets
with several oscillations. The results reported in figures 3–6 were computed using the
resolution N = 128 and M =64 for which η0 is converged to four significant figures.
Unfortunately, even the higher resolution N = 128 and M = 128 is not adequate for
capturing the second turning point of the depression-lump solution branch, that is
expected to occur very close to γ = 1 (see figure 5).
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